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ABSTRACT

Using a generally accepted model we present a comprehensive analysis (within the page limitation) of an Euler-

Bernoulli beam with PZT sensor-actuator and pure rate feedback. The emphasis is on the root locus -- the

dependence of the attainable damping on the feedback gain. There is a critical value of the gain beyond which the

damping decreases to zero. We construct the time-domain response using semigToup theory, and show that the
eigenfunctions form a Riesz basis, leading to a "modal" expansion.

I. INTRODUCTION

In this paper we present a comprehensive analysis of an Euler-Bernoulli beam with PZT sensor-actuator along its

entire length. The sensor output is a charge in a condenser and the actuator input is the current, a differentiator

circuit being then an essential component, yielding "rate feedback." We use a generally accepted model. 1-4 Tzou

et al. 4 present purely computational results and seem to be unaware of a purely theoretical analysis given earlier by

Chen et al. _ The most important design parameter is the control gain and the damping attainable -- we construct a

full root-locus analysis (omitting details to keep within the page limitation). We also unearth a curious phenomenon

-- the existence of a deadbeat mode (real eigenvalue) not noticed hitherto. We show that the eigenvalues are the
roots of an entire function of order one-half, proving in particular the existence of a countably infinite number of

eigenvalues. We also show that the eigenfunctions form a Riesz basis. We also construct the Green's function for

the nonhomogeneous eigenvalue problem. As in Chen et al. we use the theory of semigroups of operators to obtain
the time-domain solution. Our proof of the exponential stability is different from that in Chen et al., as is our

choice of the function space. We note that a similar analysis for a Timoshenko model (a "smart string") is given
in Balakrishnan, 6 where there is a critical value of the gain at which there are no eigenvalues and the semigroup is

actually nilpotent ("disappearing" solution).

2. MAIN RESULTS

The Euler-Bernoulli model formulates as

cf'"'(t,s)+mf(t,s)=O, O<s<L, O<t }
f(t,O)=O= f'(t,O); f'"(t,L)=O

cf"(t,L) +a]'(t,L) = 0

(1)

where f(t, s) is the displacement and the superdots indicate derivative with respect to t and the primes indicate

derivative with respect to s. It is convenient to set

_.2=m
c

For a precise formulation of the time-domain response we need to specify first the choice of function spaces. We

pick L2{0, L] for f(t, .). Let Ao denote the operator defined by

Aof = cf""

where

T)(Ao) : [/1 ' " "' f"" =f,f , f , E L2{O,L]; f(O) 0 =/'(O) = f'"(L)].



Let

7"/= L2[0, L] × E t.

Define the operator A with domain and range in 7-/ by:

32: _---

with domain

It is convenient to adopt the notation

Then for x in 1)(A):

Abx = cf'(L), x e 1)(A).

f0 LlAx,x] = cy'"'(s)f(s) ds + cf"(L)f'(L)

/L-- c W'(8)l ds.

It is readily seen that .4 has dense domain and is self-adjoint and nonnegative definite, and has compact resolvent.

Also zero is not an eigenvalue. Let _ denote the positive square root. On the product space

1) (V/'A')x L2[O, L]

introduce the "energy" inner product

Y2 z2

:D(x/A') = ( _11 f"EL2[O,L] and b=f'(L),

For YI in T_(A), we see that

f(O) = f'(O) = 01 .

[Y, YIE = [Ayl, Yl] + re[y2, Y2] "" "energy" (potential + kinetic).

We denote the product space under this inner product by 7"lE and note that it is a Hilbert space. Let .,4 denote

the operator defined by:

and

f2

AY=
o_

m

Thus defined we can verify that

and that .4 is dissipative:

{[(.4 + .A')Y, Y]

Y =

fl(')

f_(L)

f2(')

E 1)(A) ,
f_'(L) e l)

= v(.,c)

= Re[AY, Y]E = _llAbxll 2 = _ c21f['(L)l 2.



It is readily verified that `4 has a compact resolvent and that `4 generates a Co contraction semigroup. With these

definitions, the system (1) goes over into the abstract formulation:

_(t) = `4v(t). (2)

This choice of the function space is technically different from that in Chen et al. 5

Eigenvalues and eigenfunctions of `4,4

Our primary interest is in the modal decomposition -- the eigenvalues of`4 and the corresponding eigenfunctions.

Or, equivalently, in the resolvent of `4. Let 7_(X, ,4) denote the resolvent of A. Let

u(_,`4)v = z

where

Since Z E 7)(`4), we can write

and

yields

Hence

I1(')

z = f_(L)

Y:(.)

(:_I - `4)z = Y

,_/l- 1"2= hi

X f2+ Aofl : h2

xI_(L) + c:['(L) = b.
0

A2z/2fl(s) + f_"(s)

Aafi(L ) + cf{'(L)

fl(O) = 0

= _2(h_(s)+_hl(s)),
: c_b

= fi(O) = fi'(L).

Eigenvalues

First we consider the eigenvalue problem, setting

O<s<L } (3)

hl=0=h2; b=0.

Let

= _ e_e/2e_'/4,

where

= f_le_°.

Then the solution satisfying the conditions at zero yields:

7 4 = --A2U 2

fl(s) = a(CoshTs - CosTs) + b(SinhTs - Sin'ts), 0 < s < L.

The constants a and b are then determined by the conditions at L:

a(AaT(SinhTL + SinTL) + c72(CoshTL + CosTL)) + b(AaT(CoshTL - CosTL) + c72(SinhTL + SinTL)) = 0

a73(SinhTL - SinTL) + bTa(CoshTL + CosTL) = O.



Let

and

Then

H(X)

AaT(Sinh 7L + SinTL)

+ c72(Cosh?L + Cos _L)

73(Sinh 7L - SinTL )

AaT(Cosh 7L - Cos -_L)

4-c72(Sinh 7L + Sin-yL)

73(Cosh-_L + Cos 7L)

D(A)-- Det H(),).

D(X) = (74 )[(CoshyL+CosTL)(Xa(SinhTL+Sin_,L) + c'y(CoshTL+CosTL))

- (SinhTL-SinTL)(Xa(CoshTL-CosTL) + cT(SinhTL+Sin_L))]

-- 274[cT(l+CoshTLCos7L) + ),a(SinhTLCosTL+CoshTLSinTL)].

We note that zero is not an eigenvalue. The eigenvalues {Xk} are thus determined by the nonzero roots of

Or, using

c7(1 -t- CoshTL CosTL) + Xa (SinhTL CosTL 4- CoshTL SinTL) = 0

we have

-i72

V

(4)

(5)

Proof

Setting L = 1, and using _ to denote c-_v, and expressing the trigonometric products in (6) as sums, we have

f = 1 + Cosh7 Cos7 - ia'y(Sinh7 Cos7 + Cosh'y SinT)

f = 1 + ½(Cos_(l+_) + Cost(I-i))

- iaT½[SinhT(1 + i)

Hence making the 1:1 transformation

we obtain

= x(i- 1)

f(_,) = g(x) = 1 + ½(Cos2x -4-Cosh2x) - ax(Sin2x + Sinh2x) (7)

+ SinT(l+ i) + SinhT(1- i) + SinT(1 - i)].

yielding an equivalent expression for determining the eigenvalues. Note that g(-) is real-valued for real values of x.

Further

g(0) = 2

while, as x --* c_, (x real), we note that

g(_) - -o¢.

Hence there is a positive real root. Denote it xo. Then

._ ---- _,.y2,_ = _X2(i_ 1)2i = _2x2.

Hence

XO : -2x02

1"Due to J. Lin; private communication.

Theorem 2.1t

.A has exactly one real-valued eigenvalue.

(1 + CoshTL Cos_,L) - iT__a (SinhTL Cos_,L + CoshTL SinTL) = O. (6)
beC



is an eigenvalue. We note that xl is the ony real-valued root of g(.). Indeed, if there is a real-valued eigenvalue of

A, we must have, denoting it by ),l,

and xo must be a root of g(-). Hence

Or, Ao is the only real-valued eigenvalue of .4.

At = -2x_

X0---- X 1 .

We note that the corresponding eigenfunction is given by

el(s) = (Cosh_/o - Cos_fo)(Cosh'yo s - Cos_fo s) - (Sinh_o - Sin_o)(SinhTos - Sin_os)

where

_o=Xo(i-1), _=-2xo 2

Theorem 2.2 (Chen, et al. 5)

Let {Ak} denote the eigenvalues, and assume that

I_kl--" _¢.

Then
--C

lim Re Ak = --
k La

(8)

Proof

See Chen et al. 5 for a proof.

The authors of Chen et al. however do not appear to offer a proof of the fact that the eigenvalues {£k} are

nonfinite in number. The fact that the resolvent is compact is not adequate to establish this; the compactness only

assures that if nonfinite in number then {£_} can be arranged so that

and

I,x_[ --. oo _ k--oo.

For proving the fact that eigenvalues are denumerably infinite we can indicate a general technique.

Theorem 2.3

The eigenvalues { Ak } are denumerably infinite and such that

(')1 Im _ < oc. (9)

Proof

From (6) we see that for each a, the eigenvalues are the zeros of the function

(°)d(,_) = (1 + Cosh_L Cos-yL) - i _ -y(Sinh-yL Cos-yL + Cosh-yL Sin_L). (10)

As a power series expansion will show, this is an entire function of the complex variable )_. Moreover it is of

exponential type, of order ½, and of completely regular growth. Further we can calculate that

h(O) = li'"_ logld(rei°)l = v_ max([Sin-_[, ]Cos-_[).
_ --'*00



Let n(r) denote the number of zeros of d(.) in the circle of radius r centered at zero.

R.P. Boas (see Levin T) we have:

,_(r) l /2-lim rt/2 - h(O) dO > O.r _ O_ 47"(

Hence

Then by the theorem of

liran(r) = _,

or, the number of zerosisnot finite.Moreover the functionisofclassA (seeLevin7 forthe definition)since

f RlOgld(s)d(-s)[ ds < Md < 0_.
sup s2R>o ao 1 +

The result (9) is a consequence. Q.E.D.

Remark

Applying Jensen's Theorem we have

1 f2, d,(,.e,o) _e,o
Jo _ de = _(_).

We can acutally compute this as a quick means of locating eigenvalues. There is a jump of 2 corresponding to each
eigenvalue and its conjugate. This is shown in Figure 1 for

(2

- .01.
Lcv

Eigenfunctions

The eigenfunction corresponding to the eigenvalue ,kk is given by

_bk

'_k = Ak _i,(L)
Ak_

where

where

or,we may take

or,

ck =

Ck(s) = ck(CoshT_s - CosT_s) + dk(SinhTks - SinTks)

(CoshTJ_ - CosTkL); dk = -(SinhT_L - SinTkL)

Ck(s) = Ak[(CoshTuL - CosTaL)(Cosh7_s - CosTks) - (SinhTkL - SinT_L)(Sinh7_s - SinTks)]. (11)

Correspondingly:

¢_(L) = 2A_7_(CoshTkL - CosTkL) SinT_L.

The coefficient Ak may be chosen for appropriate normalization. For example we may make

II'_kll= 1.

Note that _ is an eigenvalue of A* and the corresponding eigenvector is:

7_(.)

•_ = B_ T_(L)

--_kCk(')



where Bk is again a "normalization" scalar. Note that

[l,k, _klE = c k( ) d8 _k(s) _ ds AkBk

= 4cAkB_7_ckdk (Cosh%_s Cos%s + Sinh%_s Sin_,_s) ds

= 4cckd_AkBkTk CoshTkL SinTkL

=/ 0.

In particular we may choose Ak, B_ so that
[_k, _PklE = 1. (12)

Purther using a result of Gohberg and Krein l° (we omit the details) we can establish that {@k, _Pk} with the

normalization (12) actually yield a Riesz basis for 7"/E. In terms of this basis we have the ("modal") expansion for

the solution of (2)
oo

Y(t) = _",_k (13)
I

where
ak = [Y(O),_klE

and as an easy byproduct, using (8), we see that the semigroup generated by A is exponentially stable (established

in Chen et aL by different arguments).

Root Locus

Let us consider how the eigenvalues behave as the gain a is varied. For this purpose it is convenient to define

d(A;a) = M(A) + _ N(A)
CY

where

M(),) = 1 + CoshTL Cos'yL

N(A) = -i----_-_(Sinh'yL CosTL + CoshTL Sin'yL).
el2

Because of the analytic dependence of d(A; a) on a, we can invoke the theory of algebraic or algebroidal functions s'9

and note that

d(J,(_);o) = 0

will define A (a) as a multivalued analytic function of a with isolated singularities, if any. In particular this allows

us to define the sequence {Ajc(a)}, k = 1,2,... such that

= L_--';' ,k = (2k-1)_ + _k_k(o)

(the "clamped-free" beam modes) and
i(k_ - e'k) 2

lira A_(a) =
a_ L2v

("clamped-rolling" modes) and the real root
Ao(_)

is such that

lim _o(a) = 0, limo_O(a ) = -oo.
Q ---, OO

A plot of the locus of the real root is shown in Figure 2. Moreover

-1 N(_) I
A_(a)

cv M'(A) + c='_N'(A) ,_=,x,Ca)



In particular

We can show that

_(0)- -I Y(_) _=_,(0)c. M'(_)

d"_'(ReAk(a)) = g2 v , o = 0 (14)

c
-- o_ ----- -[-oo

2a2L '

d
d"_ (Ira Ak(O)) _> 0.

A root locus of the first mode is shown in Figure 3. The damping (= ]ReAk]) increases with the gain until a

critical value of the gain is reached and thereafter decreases to zero. Note that by virtue of (14) we have actually

"proportional damping" for small gain. A plot of the critical value of the gain versus the mode number is given in
Figure 4.

g(_, s) =

is a "particular" solution of

such that

Resolvent

Let us now return to the resolvent-- or solving(3).We note that

_ (Sinh_,(s- a) - Sin_(s-a))v2(h2(a)+Ahl(a)) da

A2V2fl -4- f['" ----- v2(h2"4-Ahl)

:_(o)= f_(o)= o.

Hence we can express the solution fl(A, s), where we have included A to indicate the dependence on A, as:

/l(A,s) = g(A,s) + a(A)(Cosh*ts - Cos'_s) + b(A)(Sinh-ts - Sin*ts), 0 < s < L

where the coefficientsa(A),b(A) are determined from

I "(_) Ib(A) = H(A)-I

ab - ctAg'(X, L) - cg"(A, L)

-g'"(A, L)

where the primes again denote derivatives with respect to the variable s. Hence letting

H(X) :-

and defining

so that

_(_) =

H(A)/_(A) = D(A)I = H(A)H(A),

1

a(A) = D(A"--"_[h22(A)(ab - aAg'(A, L) - c9"(A, L)) + hl2(A)g'"(A, L)I

1

b(A) ----- D(A-'-'_[-h21(A)(ob - aXg'(A, L) - c9"(A, L)) - hlI(A)9'"(X, L)].



We can cast the Green's function in the form:

:1(; 8) = ._" _(_8,o) h(.) d_ + f'_ h'(_;o,8) h(.)d.
' __ n(,_) D(,_)

ob
+ _ [h22(A)(CoshTs-CosT8) - h21(A)(SinhTs-SinTs)]

u(,_)

K(A;a,s)

Finally

= (CoshTs-CosTs) 2h12 - -_'-h22 CoshT(L-a) + 2h12 + --h_2 Cos-r(L-a)7 2

2ch22 (Sinhq,(L-o') + Sin"t(L- o'))]
J

+ (Sinh_s - SinTs) 2hi,/CoshT(L - a)

2ch21 1+ _ (SinhT(L-a) + SinT(L-a)) , s < a
7

h = re(h2 + )_hl)

D(,k) = -2_2v 2 [c'r(1 + Cosh_tL CosTL) + ,_a (Sinh'rL Cos_cL + Cosh 7L Sin 7L)].

;_(x,s)

= /i(x,o)

xh(a,s)- h_(s)

Note that setting o = 0 in (15) we get the Green's function for the clamped/free-free beam. In particular

re(0, ._)
hi

^1(o)
h2

Kh2

= (gh2)(0)

-hl

+ _h_(0) L
-g

0

where Kh2 is the function given by

m/,(L - a)h2(a) da + --
c

(L - a)h2(a ) da, 0<s<L.

_)

(15)
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Figure 2: Deadbeat Mode (Real Eigenvalue).
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